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Abstract. With the advances in computer technol-

ogy, the finite-difference time-domain (FDTD) method

is becoming increasingly popular in the analysis of mi-

crowave circuits. A major drawback of the conven-

tional Yee FDTD implementation is the enormous time

and memory required to characterize the resonant be-

havior of narrow-band circuits. In this paper, we in-

troduce a technique which effectively employs a combi-

nation of Prony’s extrapolation and adaptive sampling

of the temporal data to reduce the number of FDTD

iterations for resonant circuits. The new technique is

applied to the characterization of a multilayered copla-

nar waveguide filter element.

1. Introduction

The finite-difference time-domain (FDTD) method

is a general-purpose electromagnetic (EM) modeling

technique for predicting the electrical performance of

microwave circuits and high-speed digital interconnects

(cf. [1]). In the basic FDTD method, the compu-

tational volume containing the circuit is subdivided

into cubical cells and Maxwell’s equations for the EM

field are advanced in time over this volume using cen-

tered finite difference approximations for the deriva-

tives, as proposed by Yee in 1966 [2]. A major draw-

back of this approach is the enormous computer time

and memory required for accurate characterization of

the resonant behavior of narrow-band (or high-Q) mi-

crowave circuits. Since the S-parameters change sig-

nificantly over a narrow frequency band, the FDTD

simulation of these circuits requires large number of

time steps to achieve adequate frequency resolution of

the spectral response in the resonance region. Digi-

tal signal processing techniques such as MUSIC and

auto-regressive (AR) linear prediction algorithms [3],

Prony’s method in time [4] and frequency [5] domains,

have been used to reduce the computational require-

ments of the FDTD method for highly resonant cir-

cuits. Application of these techniques in the time do-

main primarily involves either direct extrapolation of

the late-time response from the short-time samples

computed by the FDTD method, or the utilization of a

linear predictor model in which a time-decimated sam-

ple set is trained to estimate the model parameters

and the late-time response. Although these methods

speed up the basic Yee FDTD algorithm considerably,

they still involve reasonably large-order linear predic-

tion methods (e.g., 110th order AR model in [3]) to

characterize the resonant behavior of very high-Q cir-

cuits. The method presented in this paper allows a

low-order prediction method to be used.

We introduce a spectral estimation technique

which employs a combination of Prony’s extrapola-

tion method and adaptive sampling of the temporal

data to reduce the number of FDTD iterations in the

characterization of resonant circuits. In practice, to

achieve fine resolution of the resonant response of high-

Q circuits, the late-time temporal data is zero-padded

to artificially decrease the frequency step in the dis-

crete Fourier transform (DFT) operation. While zero-

padding is convenient, it does not provide any physical

insight into the convergence of the transient response.

Instead of padding with zeros, we first extrapolate the

early-time data to moderately late time by using a low-

order Prony’s exponential model, and then apply the

DFT operation successively on the extrapolated data,

each time using only a partial set of this data. Thus, by

adaptively scaling the frequency interval at each DFT

operation, the proposed technique captures more and

more spectral points in the resonance region to accu-

rately characterize the high-Q behavior. We illustrate

the technique by application to the analysis of a mul-

tilayered coplanar waveguide (CPW) short-end stub.

The computed results corroborate well with measure-

ments, and demonstrate that considerable comput a-
tional savings can be accomplished over the basic Yee

algorithm without compromising accuracy. Therefore,

the proposed method is anticipated to provide an effi-

cient, general-purpose EM simulation tool for the anal-

ysis of circuit response and package-induced parasitic

characterized by high-Q behavior.
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2. Frequency Scaling Technique

Suppose that the FDTD method employs N time

steps, each of length At. In the frequency domain, the

frequency interval between two sample points is given

by A f = I/( NAt). Therefore, we can obtain the re-

sponse in the frequency domain at nAf, where n is an

integer. Consider a high-Q response exemplified by the

solid line in Fig. 1. It is seen that the response changes

drastically in the interval ~ E (?o, fn+l). If we use the

basic FDTD method [4] with A f ~ (f~+l – fo), we

would miss the sharp resonant peak at B, and the com-

puted response in the resonance region is likely to be

represented by the dashed line in Fig. 1. Since At can-

not exceed the upper bound specified by the Courant

stability condition, unless a large N is used, the

basic FDTD method does not have the frequency reso-

lution (small enough Aj) to detect the sharp resonant

behavior, which is crucial to the accurate prediction

of the high-Q response. Alternatively, more spectral

points are needed in the resonance region to achieve
small enough Af. For geometries with large aspect

ratios, and hence very large Q’s, the number of tempo-

ral samples, IV, may become prohibitively so large as

to render the basic FDTD implementation impractical.

We will show next that it is possible to achieve good

spectral resolution of the high-Q response by using a

relatively small N.

Let us assume that the time history of the field

at the ports has been recorded until the “numerical”

steady state. The steady state is achieved by imple-

menting the the basic FDTD method only for Nb time

steps corresponding to early-time transients, and ex-

trapolating this data to No time steps (Nb < No) us-

ing Prony’s extrapolation method [5]. In this method,

we represent the time sequence of Nb steps as a finite

summation of complex exponential with unknown co-

efficients and exponents. Using this sequence, the ex-

ponents are determined by solving a difference equa-

tion, and the coefficients are obtained from the solution

of a linear Vandormonde system of matrix equations.

The rest of the time history is extrapolated from the

exponential “spectrum” estimated from the early-time

samples. In contrast to [4], we employ a relatively

low-order Prony’s exponential model, because the fre-

quency scaling technique, the computational operation

to be discussed next, improves the resolution in the res-

onant region.

The number of time steps, N, needed to achieve

the fine resolution near resonance, is usually much

larger than No (N > No). After the FDTD imple-

mentation and the Prony ’s extrapolation, which to-

gether generate a temporal sequence of length No, we
apply the DFT (n + 1) times on a subset of this se-

quence, each time using a smaller number of tempo-

ral samples than the preceding DFT iteration, that is,

No> Nl>... >N~> ... > Nn.1 > N.. Thus, we ef-

fectively increase the frequency step by a small amount

each time. Note that At remains unchanged through

all the DFT operations. Nh, h = 1,2, ,.., n, can be cal-

culated aa shown below. The frequency increment for

each DFT operation is given by

1
Afh = —

NhAt
(1)

so that Afn > Afn-l > . .. > Afo. With reference to

Fig. 1, let

~.= (k - l)Afo (2)

fn+l = ~Afo (3)

with the result, fn+l – fo = Afo. In (2) and (3), k

is a positive integer to be determined. Suppose that

n points are needed between A and C in Fig. 1 (ex-

cluding the end points) to achieve good spectral res-

olution in the resonance region. Then, the frequency

span f G (fo, fn+l) can be subdivided into (n + 1)

equal increments, so that the new frequency interval

is given by ~. The original DFT result (N. time

steps) has two points, namely A and C, in the fre-

quency range ( fo, fn+l). The subsequent DFT op-

erations (using N1, Nz, . ..~Nn time steps) will gener-

ate more points within the above-mentioned frequency

range. By joining all the points obtained after the final

DFT operation, a very accurate representation of the

resonant response can be obtained.

In terms of the new frequency increment ~, the

additional frequencies at which response is generated

after each DFT operation may be written as

fh=fo+!#2 (k- l)A~h, h = 1,2, ...jn (4)

From eqs. (l), (2) and (4), we find that

1
Afh=—=

(n+l)(k-l)+h 1

Nh At (n+ l)(k -1) NoAt ‘5)

Therefore,

(n+ l)(k -1)

‘h= ‘“(n+ l)(k -1)+ h = 1 + h/[(n~l)(k - 1)]
(6)

The number of temporal samples used in the final

DFT operation, given by,

No

‘n = 1 + n/[(ra+ l)(k – 1)]
(7)

should not be much smaller than No, because Nn << No

does not assure convergence. Therefore, we require
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that (Nn /No) be less than, but close to, unity, with

the result

(n+ l;k -1)
<I, orksl. (8)

Generally, as indicated by the computed results in the

next section, k >4 would be adequate.

To summarize, the steps involved in the frequency

scaling FDTD method are as follows:

1. Run the basic FDTD method long enough (iV~

time steps) to generate temporal data up to moderately

early times.

2. Extrapolate the sequence of N~ steps to NO

time steps using spectral estimation techniques such

as Prony ’s method. It is assumed that NO indicates

‘numerical’ steady state.

3. After the first DFT operation on the time his-
tory of length No, plot the spectral response and deter-
mine the frequent y extent, (~., ~n + 1), oft he resonance

region.

[14. Calculate k = & + 1 (note k >> 1), where

[.] denotes the integer part of the argument.

5. Divide the frequency range (.fo, fn+l) into (n+

1) segments to increase the frequency resolution in the

resonance region.

6. Calculate N~, h = 1,2,..., n, for subsequent

DFT operations, using eq. (6).

7. Perform the DFT operation for each h and

store the data.

8. After the last DFT operation, plot the com-

puted parameter (resonant response) against frequency

using data from all the DFT output files.

3. Results

We have simulated a two-layer CPW short-end se-

ries stub [6], whose geometry is shown in Fig. 2,

by the frequency scaling FDTD method. The num-

ber of Yee cells used along each direction is given by

Nr = 100, NV = 160, Nz = 50, each with dimen-

sions Ax = Ay = Az = 25 pm. The duration of

each time step, chosen in accordance with Courant’s

condition, is given by At = 0.044 ps. In [6], the bot-

tom layer is quite thick (five times thicker than the

top layer). Therefore, in order to bound the size of

the computational domain to reasonable proportions,

we truncate the lower dielectric with Mur’s first-order

absorbing boundary condition (ABC) with layer thick-

ness D2 = 10 roils (instead of 125 roils in [6]). The

moment method simulation in [6] also assumes that

the CPW element is enclosed in a metallic box. In

the present FDTD analysis, Mur’s first-order ABC is
used to terminate all the six rectangular faces of the

computational grid. This open-region description is

an accurate representation of the measurement config-

uration described in [6], and is appropriate to phased

array antenna applications. Despite the differences in

geometries and the simulation technique used, the ob-

served discrepancies between theoretical predictions of

both of the methods and the measurements reported in

[6] are small. This is perhaps due to the low radiation

loss of the CPW element.

Fig. 3 displays the magnitude and phase of the

CPW stub over a frequency band of about 100 GHz.

For comparison, the measurements reported in [6] are

also shown between 5 and 25 (IHz. The resonant na-

ture of the stub, predicted by the measurements, is

captured very well by the FDTD computation. From

ideal transmission line analysis, the stub length be-

comes resonant at 20 GHz and at frequency intervals

of 40 GHz, which corresponds to half a guide wave-

length. These multiple resonances are predicted very

accurately by the frequency scaling FDTD implemen-
tation. We terminate the FDTD computations after

Nb = 3600 time steps, and extrapolate this sequence to

No = 5500 using a Prony’s model of order p = 16. The

extrapolated sequence is used in the frequency scaling

technique described earlier. In contrast, the conven-

tional Yee implementation would have required at least

25,000 time steps to predict the high-Q behavior of the

resonances.

4. Conclusions

We have presented a new technique which employs
a combination of Prony’s spectral estimation and adap-

tive sampling of the temporal data (used in the DFT

operation) to reduce the number of time steps needed

to achieve fine frequency resolution of high-Q reso-

nances in the FDTD simulation of narrow-band mi-

crowave circuits. We have implemented the scaling

technique by simulating a multilayered CPW element,

and demonstrated favorable comparison of the com-

puted data with independent moment method calcula-

tions as well as with measurements.
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Fig. 3. (a) Magnitude, (b) phase of the scattering

parameters of the CPW stub computed by the scaling

FDTD method. The experimental results are from [6].
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