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Abstract. With the advances in computer technol-
ogy, the finite-difference time-domain (FDTD) method
is becoming increasingly popular in the analysis of mi-
crowave circuits. A major drawback of the conven-
tional Yee FDTD implementation is the enormous time
and memory required to characterize the resonant be-
havior of narrow-band circuits. In this paper, we in-
troduce a technique which effectively employs a combi-
nation of Prony’s extrapolation and adaptive sampling
of the temporal data to reduce the number of FDTD
iterations for resonant circuits. The new technique is
applied to the characterization of a multilayered copla-
nar waveguide filter element.

1. Introduction

The finite-difference time-domain (FDTD) method
is a general-purpose electromagnetic (EM) modeling
technique for predicting the electrical performance of
microwave circuits and high-speed digital interconnects
(cf. [1]). In the basic FDTD method, the compu-
tational volume containing the circuit is subdivided
into cubical cells and Maxwell’s equations for the EM
field are advanced in time over this volume using cen-
tered finite difference approximations for the deriva-
tives, as proposed by Yee in 1966 [2]. A major draw-
back of this approach is the enormous computer time
and memory required for accurate characterization of
the resonant behavior of narrow-band (or high-Q) mi-
crowave circuits. Since the S-parameters change sig-
nificantly over a narrow frequency band, the FDTD
simulation of these circuits requires large number of
time steps to achieve adequate frequency resolution of
the spectral response in the resonance region. Digi-
tal signal processing techniques such as MUSIC and
auto-regressive (AR) linear prediction algorithms [3],
Prony’s method in time [4] and frequency {5] domains,
have been used to reduce the computational require-
ments of the FDTD method for highly resonant cir-
cuits. Application of these techniques in the time do-
main primarily involves either direct extrapolation of
the late-time response from the short-time samples
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computed by the FDTD method, or the utilization of a
linear predictor model in which a time-decimated sam-
ple set is trained to estimate the model parameters
and the late-time response. Although these methods
speed up the basic Yee FDTD algorithm considerably,
they still involve reasonably large-order linear predic-
tion methods (e.g., 110th order AR model in [3]) to
characterize the resonant behavior of very high-Q cir-
cuits. The method presented in this paper allows a
low-order prediction method to be used.

We introduce a spectral estimation technique
which employs a combination of Prony’s extrapola-
tion method and adaptive sampling of the temporal
data to reduce the number of FDTD iterations in the
characterization of resonant circuits. In practice, to
achieve fine resolution of the resonant response of high-
Q circuits, the late-time temporal data is zero-padded
to artificially decrease the frequency step in the dis-
crete Fourier transform (DFT) operation. While zero-
padding is convenient, it does not provide any physical
insight into the convergence of the transient response.
Instead of padding with zeros, we first extrapolate the
early-time data to moderately late time by using a low-
order Prony’s exponential model, and then apply the
DFT operation successively on the extrapolated data,
each time using only a partial set of this data. Thus, by
adaptively scaling the frequency interval at each DFT
operation, the proposed technique captures more and
more spectral points in the resonance region to accu-
rately characterize the high-Q behavior. We illustrate
the technique by application to the analysis of a mul-
tilayered coplanar waveguide (CPW) short-end stub.
The computed results corroborate well with measure-
ments, and demonstrate that considerable computa-
tional savings can be accomplished over the basic Yee
algorithm without compromising accuracy. Therefore,
the proposed method is anticipated to provide an effi-
cient, general-purpose EM simulation tool for the anal-
ysis of circuit response and package-induced parasitics
characterized by high-Q behavior.
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2. Frequency Scaling Technique

Suppose that the FDTD method employs N time
steps, each of length At. In the frequency domain, the
frequency interval between two sample points is given
by Af = 1/(NAt). Therefore, we can obtain the re-
sponse in the frequency domain at nA f, where n is an
integer. Consider a high-Q response exemplified by the
solid line in Fig. 1. It is seen that the response changes
drastically in the interval f € (fo, fat+1). If we use the
basic FDTD method [4] with Af > (fa41 — fo), we
would miss the sharp resonant peak at B, and the com-
puted response in the resonance region is likely to be
represented by the dashed line in Fig. 1. Since At can-
not exceed the upper bound specified by the Courant
stability condition, unless a large N is used, the
basic FDTD method does not have the frequency reso-
lution (small enough Af) to detect the sharp resonant
behavior, which is crucial to the accurate prediction
of the high-Q response. Alternatively, more spectral
points are needed in the resonance region to achieve
small enough Af. For geometries with large aspect
ratios, and hence very large Q’s, the number of tempo-
ral samples, N, may become prohibitively so large as
to render the basic FDTD implementation impractical.
We will show next that it is possible to achieve good
spectral resolution of the high-Q response by using a
relatively small V.

Let us assume that the time history of the field
at the ports has been recorded until the “numerical”
steady state. The steady state is achieved by imple-
menting the the basic FDTD method only for N, time
steps corresponding to early-time transients, and ex-
trapolating this data to Ny time steps (NV; < Np) us-
ing Prony’s extrapolation method [5]. In this method,
we represent the time sequence of Ny steps as a finite
summation of complex exponentials with unknown co-
efficients and exponents. Using this sequence, the ex-
ponents are determined by solving a difference equa-
tion, and the coeflicients are obtained from the solution
of a linear Vandormonde system of matrix equations.
The rest of the time history is extrapolated from the
exponential “spectrum” estimated from the early-time
samples, In contrast to [4], we employ a relatively
low-order Prony’s exponential model, because the fre-
quency scaling technique, the computational operation
to be discussed next, improves the resolution in the res-
onant region.

The number of time steps, N, needed to achieve
the fine resolution near resonance, is usually much
larger than Ny (N > Ny). After the FDTD imple-
mentation and the Prony’s extrapolation, which to-
gether generate a temporal sequence of length Ny, we
apply the DFT (n + 1) times on a subset of this se-
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quence, each time using a smaller number of tempo-
ral samples than the preceding DFT iteration, that is,
No>Niy>..>Nyp>..>Np_1 > N,. Thus, we ef-
fectively increase the frequency step by a small amount
each time. Note that At remains unchanged through
all the DFT operations. N, h = 1,2,...,n, can be cal-
culated as shown below. The frequency increment for
each DFT operation is given by

1
so that Af, > Afn-1 > ... > Afy. With reference to
Fig. 1, let

fo=(k=1Af (2)
frv1 = kA S 3)
with the result, foy1 — fo = Afo. In (2) and (3), k
is a positive integer to be determined. Suppose that
n points are needed between A and C in Fig. 1 (ex-
cluding the end points) to achieve good spectral res-
olution in the resonance region. Then, the frequency
span f € (fo,fnt1) can be subdivided into (n + 1)
equal increments, so that the new frequency interval
is given by nA_{—‘{. The original DFT result (N, time
steps) has two points, namely A and C, in the fre-
quency range (fo, fo41). The subsequent DFT op-
erations (using Ni, Ny, ..., N, time steps) will gener-
ate more points within the above-mentioned frequency
range. By joining all the points obtained after the final
DFT operation, a very accurate representation of the
resonant response can be obtained.
In terms of the new frequency increment né_%, the
additional frequencies at which response is generated
after each DFT operation may be written as

hA
fo=fo+ n+f; L(k=DAf, h=1,2,..,n (4

From eqs. (1), (2) and (4), we find that

1 (n+){k-1)+h 1

Alw = NpAt (n+1)(k—1) NoAt )
Therefore,
Ny = Ny DE=D No

(n+)(k=1)+h 1+h/[(n+ D(k— 1()61)

The number of temporal samples used in the final
DFT operation, given by,

= o )
~ 14 n/[(n+1)(k - 1)]

should not be much smaller than Ng, because N,, < Ny
does not assure convergence. Therefore, we require
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that (N, /No) be less than, but close to, unity, with
the result

m<<l,ork>>l. (8)

Generally, as indicated by the computed results in the
next section, k& > 4 would be adequate.

To summarize, the steps involved in the frequency
scaling FDTD method are as follows:

1. Run the basic FDTD method long enough (N
time steps) to generate temporal data up to moderately
early times.

2.  Extrapolate the sequence of N, steps to Ny
time steps using spectral estimation techniques such
as Prony’s method. It is assumed that N, indicates
‘numerical’ steady state.

3. After the first DFT operation on the time his-
tory of length Ny, plot the spectral response and deter-
mine the frequency extent, (fo, fnt1), of the resonance
region.

4. Calculate k = [—A%] + 1 (note k > 1), where

[.] denotes the integer part of the argument.

5. Divide the frequency range (fo, fat1) into (n+
1) segments to increase the frequency resolution in the
resonance region.

6. Calculate Ny, h = 1,2,...,n, for subsequent
DFT operations, using eq. (6).

7. Perform the DFT operation for each h and
store the data.

8. After the last DFT operation, plot the com-
puted parameter (resonant response) against frequency
using data from all the DFT ocutput files.

3. Results

We have simulated a two-layer CPW short-end se-
ries stub [6], whose geometry is shown in Fig. 2,
by the frequency scaling FDTD method. The num-
ber of Yee cells used along each direction is given by
N, = 100, N, = 160, N, = 50, each with dimen-
sions Az = Ay = Az = 25 um. The duration of
each time step, chosen in accordance with Courant’s
condition, is given by At = 0.044 ps. In [6], the bot-
tom layer is quite thick (five times thicker than the
top layer). Therefore, in order to bound the size of
the computational domain to reasonable proportions,
we truncate the lower dielectric with Mur’s first-order
absorbing boundary condition (ABC) with layer thick-
ness Dy = 10 mils (instead of 125 mils in [6]). The
moment method simulation in {6] also assumes that
the CPW element is enclosed in a metallic box. In
the present FD'TD analysis, Mur’s first-order ABC is
used to terminate all the six rectangular faces of the
computational grid. This open-region description is
an accurate representation of the measurement config-
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uration described in [6], and is appropriate to phased
array antenna applications. Despite the differences in
geometries and the simulation technique used, the ob-
served discrepancies between theoretical predictions of
both of the methods and the measurements reported in
[6] are small. This is perhaps due to the low radiation
loss of the CPW element.

Fig. 3 displays the magnitude and phase of the
CPW stub over a frequency band of about 100 GHz.
For comparison, the measurements reported in [6] are
also shown between 5 and 25 GHz. The resonant na-
ture of the stub, predicted by the measurements, is
captured very well by the FDTD computation. From
ideal transmission line analysis, the stub length be-
comes resonant at 20 GHz and at frequency intervals
of 40 GHz, which corresponds to half a guide wave-
length. These multiple resonances are predicted very
accurately by the frequency scaling FDTD implemen-
tation. We terminate the FDTD computations after
Ny = 3600 time steps, and extrapolate this sequence to
Ny = 5500 using a Prony’s model of order p = 16. The
extrapolated sequence is used in the frequency scaling
technique described earlier. In contrast, the conven-
tional Yee implementation would have required at least
25,000 time steps to predict the high-Q behavior of the
resonances.

4. Conclusions

We have presented a new technique which employs
a combination of Prony’s spectral estimation and adap-
tive sampling of the temporal data (used in the DFT
operation) to reduce the number of time steps needed
to achieve fine frequency resolution of high-Q reso-
nances in the FDTD simulation of narrow-band mi-
crowave circuits, We have implemented the scaling
technique by simulating a multilayered CPW element,
and demonstrated favorable comparison of the com-
puted data with independent moment method calcula-
tions as well as with measurements.
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Fig. 1. Example of poor frequency resolution of the
resonance region. :
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Fig. 2. Geometry of a CPW short-end series stub
with L = 1500, D1 = 625, Dy = 250, ¢,; = 9.9,
€r2 = 2.2. All dimensions are in pm.
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Fig. 3. (a) Magnitude, (b) phase of the scattering
parameters of the CPW stub computed by the scaling
FDTD method. The experimental results are from [6].



